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Abstract

Severalresultson the reconfigurablecontrolarchitec-

ture for the formation flyingof multiplespacecraft

are presented.In thisdirection,simplecontrollaws

are combined with logic-basedswitchingto propose

a hybrid controlarchitectureforleaderreassignment,

leader-followingcapturing,and dealingwith control
saturations.
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1 Introduction

Formation flying (FF) has been identified as an en-

abling technology for many of the NASA's 21 st cen-

Hadaegh [7]. The basic idea in leader-following is

to designate a particular frame (or multiple frames)

in the formation as the reference frame(s) of inter-

est and measure and control the states of the rest

of the formation with respect to them. The purpose
of the present paper is to show that linear matrix

inequalities (LMIs) [2] can be combined with logic-

based switching schemes to propose reconfigurable

control architecture for the formation flying of mul-
tiple spacecraft.

The outline of the paper is as follows. In §2 the no-

tation used in the paper is presented. Simple control

laws for the formation flying control are then derived

in §3 based on the leader-following concept. In §4,

§5, and §6, the control laws derived in §3 are com-

bined with logic-based switching to propose a hybrid

control architecture for leader reassignment, leader-

tury missions, among them, the Space Technology- following capturing (defined subsequently), and deal-

3 (ST-3) and the Terrestrial Planet Finder (TPF). ing with control saturations.

Formation flying involves flying a group of space

craft in a particular pattern while maintaining precise

(possibly time varying) relative position, velocity, at-

titude, and angular velocity, with respect to each

other [3], [6]. Since traditional spacecraft control is

often concerned with measuring and maintaining the

same quantities for a single spacecraft with respect

to an inertial reference frame, the analogous FF con-

trol and estimation problems are often an order of

magnitude more challenging than those encountered

traditionally for a single spacecraft [1], [4], [8]. In

order to make the FF control problems at least sire-

2 Notation

Formation flying consists of flying a group of space-

craft in a particular pattern. To be able to express

the time evolution of the formation and design the
corresponding control laws, it is convenient that a

reference frame is attached to each spacecraft. We
shall always assume that these reference frames are

induced from a dextral set of three orthonormal vec-

tors. Let the formation have n spacecraft labeled as
1,2,...,n. Let .Ti denote the reference frame at-

liar to the single spacecraft case, an approach based tached to the i-th spacecraft; .T I on the other hand

on leader-following has been proposed by Wang and shall designate the inertial reference frame. For the

"Email: mesbahi@ha/ez.jpl.nasa.gov inertia and the mass of the i-th spacecraft we use I |
tEmaih .b'ed.y.hadaegh@jpl.nasa.gov and m i , respectively. The force and torque acting
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Figure i: Formation Coordinates

upon iare denoted by fi and r i ;forthe mass nor-

realizedforcewe used ui:= _ The timederivative
/7./I "

with respectto _ shallbe denoted by _t/;likewise,

willbe used for the time derivativewith respectdt

to .TI . rijdenotes the positionof the originof

with respectto _J ;r|isthe positionofthe originof

with respectto _x. The desiredpositionof the

originof .Ti with respectto _'Jshallbe denoted by
ij ! . . -
rd ,.andby rd when j = I.The velooty ofthe origin

of ._ with respectto jrj ,the velocityof the origin

of _riwith respectto _I, the desiredvelocityof the

originof Jriwith respectto .TJ ,and the desiredve-

locityofthe originof_ with respectto.TI ,shallbe

denoted by v ij , v ! , v_i , and vld , respectively. The
vector [r i v i IT shall be referred to as the state of the

i-th spacecraft and will be denoted by z i . Similar

notations axe used for the attitude and the angular
velocity of .Tt with respect to .%'J : qii and w ti are the

attitude and the an_xd, ar velocity of _ with respect
to 9rj and qp and w_a are the desired angular veloc-

ity and attitude of _| with respect to 5"J (refer to
Figure 1). All other notations are standard: _'* de-

notes the real Euclidean space of dimension n; ll.llco
and [I.II are used for the infinity norm and the 2-norm

for vectors and matrices. The cross product matrix

induced by the vector x = [xl x2 x3] T is the matrix,

X] :-"

0 --:g3 Z2

za 0 -xl

-x2 xl 0

3 Simple Control Laws for Leader-

following

In this section we go over some simple control laws

for formation flying that are derived based on the

state feedback synthesis procedure which uses LMIs

as its building block. These control laws can be used

for the control of the formation pattern under two

different measurement scenarios. First, we consider

the situation where inertial measurements are ava_l-

able to both the leader(s) and the follower(s); then

we comment on the case where the follower(s) mea-

surements are done with respect to its own moving

reference frame. In all subsequent sections, we say

that i is the leader of j if rJd is an affine function of
r ! which is twice differentiable.

3.1 Inertial Reference Frame Measure-
ments

Let i be the leader ofj during the time interval [to, tl].

The desired position ofj is thus expressed as,

_(t)=ri(t)+httCt), to <_ t < t I.

The error expression for j is then simply,

eJ(t) = rldCt) - rJ(t) = riCt) - rJ(t) + hiJ(t).

Assuming that h ij is twice differentiable on [to, t/],
the above expression can be differentiated twice with

respect to the inertial reference frame to obtain (re-

calling that u I = Jm-_,),

d2hlJ(t)d2eJ(t) ut(t) - uJ(t) + (3.1)
dt 2 - dt 2

By letting,

d2hiJCt)
uJ(t) = ui + dt 2 + fiJ(t), (3.2)

one obtains,

d2eJ(t) -fiJ(t) (3.3)
dt 2 -

(i.e., feedback linearization). The equation (3.3) can
be expressed as,

.4J BJ

0 0 z2(t) -



where zt(t) - eJ(t), z2(t) = d-_tt , and the matrices

A j and B j are defined as suggested by (3.4).

The control design based on the state feedback syn-

thesis for leader-following is thus reduced to finding

the term forfiJusing the followingLMI, ,,,

AJQ + Q(AJ) T + BJY + YT(BJ)T < O, (3.5)

Q > O, (3.6)

and let KJ = yQ-1 [2]. Hence, given that i is the

leader of j the control law for j has the form,

d2 hlJ( t )
uJ( t)=ul( t)+ dt 2 "+YQ-lzi(t), to<t<_t I.

Employing the above control law by the follower

spacecraft j guarantees that the origin is the globally

asymptotically stable equilibrium of the error func-

tion z(t), and thereby, rl(t) _ _(t) as t _ c¢.

3.2 Moving Reference Frame Measure-
ments

We shall now briefly go over the situation where the

measurements are done in the moving frame attached

to the follower spacecraft. Feedback linearization is

then used to reduce this case to that considered in

the previous section.

Again let i be the leader of j during the time in-

terval [t0, tl]. Contrary to the case considered pre-

viously, we would like to obtain an expression which

describes the time evolution of e j in t "j (as opposed
to _'I ). Proceeding from (3.1), one has,

d2eJ(t) d_J(t) x ei(t) + 2af(t) x dei(t)d--Vj
+af(t) x (af(t) x el(t))

d2hii(t), (3.7)= (ui(t) - uJ(t)) + dt-----i---.

the last term on the right hand side of (3.7) can of
course be represented in .FJ.

The rate of change of the angular velocity af with

respect to .TJ (or ._--I ) is related to the applied torque

on the spacecraft via the Euler's equation,

dJ(t)
d--T = (Ii)-_(rJ(t) - af(t) × (Ii,,,,J(t))). (3.8)

Let zt(t) = eJ(t), z2(t) = _ta t , and z3(t) = af(t).

The dynamics of j can thus be represented as,

kt(t) = z_(t), (3.9)

i2(t) = -2z3(t) × z2(t) - (I4)-'(rJ(t)

- z3(t) x t%(t))- zz(t) x (_3(t) × zl(t))

+ (ui(t) - uJ(t)) + d2htJ(t)
dt 2 , (3.10)

k3(t) = (/i)-l(rJ(t) - z3(t) × Iiz3(t)). (3.11)

Consider two distinct situations.

1. j has constant angular velocity: Consider the

case where,

_J(t) = _3(t) × pz3(t), (3.12)

i.e.,the angular velocityofj during the leader-

followingremains constant. The dynamical

equations(3.9)-(3.10)can then be writtenas,

_l(t) = z2(t),
_(t) = W_Zl(t) + W_z2(t) + ,,_(t) - ,,J(t),

where,

Wl=_3_T-llzzll_r, and w2=-[2_3].

Consider again the change of variable of the form

uJ(t) = ui(t) + @ + fiJ(t); then,

AJ

Define the matrices A j and B j as suggested

above; we can now proceed to solve the LMI,

AIQ + Q(AJ) T + BJY + YT(Bj)T < 0, (3.13)

Q > 0, (3.14)

and let,

d2hii(t)
uJ( t)= ui( t)+ dt 2 +YQ-lzJ(t), to <_ t <_tl;

note that only the definition of the matrix A j

has been modified from that used previously to
reflect the fact that the error vector is now mea-

sured in the moving coordinate frame attached
to the follower.

2. _ has non-constant ansular velocity: If the angu-
lar velocity ofj does not remain constant during

the leader-following, then we can use feedback

linearization to linearize the dynamics in such a



way that the LMI approach above can still be

adopted. For this purpose it suffices to let,

aj = -2z3(t) × z2(t) - (/t)-l(rJ(t)

-:3(0 × _z3(t))- _3(t)(z3(t) × _(t)), (3.15)

and let uJ(t) = u|(t) % _ + fiJ(t) % aJ(t); as

before the expression for_Jfi (t) is found be solving
an LMI.

In both scenarios considered above, the control law

for the leader spacecraft i can also be based on the

state feedback synthesis. For this purpose it suffices

to let u|(t) -- YQ-lz(t) + _ where the matri-
dt_

ces Y and Q are found from the LMI (3.5)-(3.6) by
letting,

[0,]= 0 0 ' and = _ ;

however z is now simply r_(t) - ri(t).

4 Leadership Re-Assignment

The designation of the leader, aside from its asso-

ciated hardware and software considerations and the

required communication protocol, is rather arbitrary.
It is thus of interest to consider a situation where the

leader assignments are time varying, and that any
subset of the spacecraft in the formation can assume

the leadership role. 1

Suppose that at a particular instance of time, |

is the leader of j; in this case the control law of §4

(when inertial measurements are available) can be
implemented as,

d2rid(t)
ul(t) = Kzl(t) :t- dt 2 ,

d2hJi(t)
uJ(t) =/¢P(t) + u_(t) + dt: '

where zi(t) is the state error observed by i at time

t. Since hiJ(t) = -hJi(t), when the leadership assign-

ment is reversed and j is the leader of i, the control

laws can be reconfigured as,

ui(t) = Kzi(t) + uJ(t) d2hJ|(t)
dt 2 ,

d2_(t).
,,J(t) = t(.-J(t) + dr------T-,

I Leadership reassignment becomes specially relevant when

one looks beyond ST-3 and TPF type space interferometry

missions to the formation flying of large number of spacecraft.

r j

ri+ hiJ

f_+ h_J

Dr

Figure 2: Switching for Leader Reassignment
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Figure 3: Leader-following capturing

refer to Figure 2

5 Leader-Following Capturing

We consider a situation where a free spacecraft is

captured by a leader following scheme. Building on

the control laws developed in §4, the corresponding

block diagram representing the switching control sys-

tem can be drawn as in Figure 3. Note that we have

considered the situation where the isolated spacecraft

is not assigned as a leader; if this is in fact the case,

then its control law will not be changed from when

the spacecraft was free. However, in this latter situa-

tion, the control law for the new followers of the new

leader spacecraft changes according to the procedure
presented in §5.

6 Control Saturations

We now examine the scenario where the j-th space-

craft, j, following i in a leader-following scheme, is



alsoavoidingcontrol saturation by switching between

two or more controllers. In order to simplify the pre-
sentation, we shall assume in the rest of this sec-

tion that _ = 0, to _< t _< t/.Let rndenote

the 2-norm of the maximum allowable mass normal-
ized force on each spacecraft in the formation; that

is, we require that, IluJ(t)[I _< rn, to _< t _< t I.
Now since uJ(t) = YQ-Xz(t) + ul(t) we require that,

Ilui(t) + YQ-Xz(t)ll <_ m, to <_ t <_ t/. Note that

although j has no prior knowledge about the values

of u i it has to choose Q and Y such that the con-

trol constraint is satisfied. To cope with this lack

of knowledge on the values of ul(t), we proceed to

present a controller switching mechanism which sat-

isfies the control constraint-, in face of the lark of

a priori knowledge of the values of ut(t) by the fol-

lower spacecraft. The only assumption which is re-

quired for the proposed approach to work is that,

Jlui(t)ll < m, to _< t < t/. Let us start with the

stronger requirement, IiYQ-Iz(t)l] <_ m -[lui(t)II =
rn i (t), to < t < t/in order to satisfy the control

constraint. Let _:_0= {z : zTQ_olz _< 1}, where Qto is
a positive definite matrix which is chosen such that

z(0) belongs to £t0 by solving an LMI, in conjunction
with,

T T
AQto + Qto A + BYto + Yt0 B < 0. (6.16)

For small values of St, if z'Jd(to) = Zig(t0 + St) for t E

[t0, t0 + _t] and we use the controller Kto = Yt0Q_01,

then it would be the case that z(to + ,St) E £to. In

fact, if Z'Jd(t) remains constant, then z(t) E £to for all

t E [to, t/]. In this situation, in order to guarantee

that the saturation constraint is not violated, we can

augment the above LMIs with another one,

Q,o Y °r ]>0,Yto _i( t ) --

• -1
since [2] max,>o {luJ(t)[{ -- ma.xt>o[ll%Oeo z(t){I <

x tf_-l/2vTv f_-l/2_

The problem is that in general, one cannot guar-

antee that z(to + 6t) E Cto, nor does the above

discussion addresses the situation where mi(t) does

not remain constant. We are thus led to incorpo-

rate logic-based switching in conjunction with above

LMIs to address both of these scenarios. Let rn ! :=

minte[to.tl] Jlrni(t)[[; solve the semi-definite program,

Figure 4: Ellipsoids for Control Switching

AQto + QtoA T + BYto + YtToBT < hi,

Qto >0, a < O,

z(O) _>0,

No m" -

We then proceed from time to and considered the

various scenarios which can occur at time to +/_t:

1. z(to+i_t) E E_o and mi(t) has remained constant.

2. z(to + _t) E £t0, however rn i has changed over

the interval [to, to + _t].

3. z(to + 6t) _ 'fro, whether or not m | has remained
constant.

For each scenario above, we were able to show that

an LMI can be solved to address the control satura-

tion problem [5]. Moreover, the resulting proposed

switching mechanism results in a hybrid dynamical

system for which the origin is the globally asymptot-

ically stable equilibrium point.

7 Conclusion

Several reconfigurable control strategies for the for-

mation flying of multiple spacecraft were presented.

In this direction, it was demonstrated that by em-

ploying feedback linearization and linear matrix

inequalities, in conjunction with simple switching

mechanisms, various formation control and manage-
ment issues could be addressed.
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